# -23, -36, -49,… Transcribed Image Text: Chapter

Question 11-
-23, -36, -49,… Transcribed Image Text: Chapter
11
Extra Practice
O Lesson 11-1 Decide whether each formula is explicit or recursive. Then find the
first five terms of each sequence.
Lessa
3. a, = 5n(n + 2)
1. (t
1. a,
3n + 2
2. a = 4; a,- a, -+7
4. aj = 2; a,- a, -3
6. a, = 6 – 2n
5. a, = 6n2
1.
2.
• Lesson 11-1 Find the next three terms in each sequence. Write an explicit and a
recursive formula for each sequence.
O Less
9. -12, –10.5, -9,…
12. 25, 37.5, 50, …
3.
7. 3, 5, 7,…
8. 19, 15, 11, . ..
4.
10. 0.2, 0.5, 0.8,…
11. -23, -36, -49,. ..
5.
• Lesson 11-2 Find the arithmetic mean a, of the given terms.
13. a, -1 = 10, a, +1 = 20
14. a, -1
= 7, a, + 1 = 19
15. a, -1= -2, a, + 1 = -7
O Lesson 11-3 Write the explicit formula for each geometric sequence.
Then generate the first five terms.
16. a¡ = 6,r = 2
17. a = -27, r =
18. a = 1900, r = 0.1
19. az = -5,r = 3
20. a, = 1,r = 4
21. aj = 500, r = 0.2
O Lesson 11-4 Use summation notation to write each arithmetic series for the
specified number of terms. Then evaluate each series.
22. 21, 19, 17, 15, . . . ; 8 terms
23. 4, 7, 10, 13, 16, 19, . .. ; 10 terms
24. – 35, -28, -21, – 14,. . . ; 7 terms
25. 97, 96, 95. 94, 93….:20 terms
Lesson 11-4 For each sum, find the number of terms, the first term, and the last
term. Then evaluate the sum.
10
26. E (2n + 3)
27. E (4 – n)
28. E (n + 1)
29. У (Зп – 5)
n=1
n=2
n=1
n=3
Lesson 11-5 Find the sum of each infinite geometric series.
30. 4 + 2 + 1 ++
31. 3 – 1 +- +…
32. 2.2 – 0.22 + 0.022 -.
34. 5 – +-+..
33. 0.9 + 0.09 + 0.009 +.
35. 1 + 0.1 + 0.01 + …
O Lesson 11-5 Determine whether each series is arithmetic or geometric. Then find
the sum to the given term.
36. 3 + 6 + 9 + 12 + 15 + …; 10th term
37. 3 + 6 + 12 + 24 + 48 +…; 10th term
38. -1000 + 500 – 250 + 125 – …; 7th term
39. 87 + 72 + 57 + 42 + …; 20th term
Lesson 11-6 Write and evaluate sums to approximate the area under each
curve for the domain 0 sr S 2. First use inscribed rectangles 1 unit wide.
Then use circumscribed rectangles 1 unit wide.
40. f(x) = 2×2
41. y = x3
42. g(x) = 2x + 3
43. h(x) = |x + 3|
832
Chapter 11 Extra Practice
LTAETUNI, CR. 95453

-25-