# -23, -36, -49,… Transcribed Image Text: Chapter

Question 11-

-23, -36, -49,… Transcribed Image Text: Chapter

11

Extra Practice

O Lesson 11-1 Decide whether each formula is explicit or recursive. Then find the

first five terms of each sequence.

Lessa

3. a, = 5n(n + 2)

1. (t

1. a,

3n + 2

2. a = 4; a,- a, -+7

4. aj = 2; a,- a, -3

6. a, = 6 – 2n

5. a, = 6n2

1.

2.

• Lesson 11-1 Find the next three terms in each sequence. Write an explicit and a

recursive formula for each sequence.

O Less

9. -12, –10.5, -9,…

12. 25, 37.5, 50, …

3.

7. 3, 5, 7,…

8. 19, 15, 11, . ..

4.

10. 0.2, 0.5, 0.8,…

11. -23, -36, -49,. ..

5.

• Lesson 11-2 Find the arithmetic mean a, of the given terms.

13. a, -1 = 10, a, +1 = 20

14. a, -1

= 7, a, + 1 = 19

15. a, -1= -2, a, + 1 = -7

O Lesson 11-3 Write the explicit formula for each geometric sequence.

Then generate the first five terms.

16. a¡ = 6,r = 2

17. a = -27, r =

18. a = 1900, r = 0.1

19. az = -5,r = 3

20. a, = 1,r = 4

21. aj = 500, r = 0.2

O Lesson 11-4 Use summation notation to write each arithmetic series for the

specified number of terms. Then evaluate each series.

22. 21, 19, 17, 15, . . . ; 8 terms

23. 4, 7, 10, 13, 16, 19, . .. ; 10 terms

24. – 35, -28, -21, – 14,. . . ; 7 terms

25. 97, 96, 95. 94, 93….:20 terms

Lesson 11-4 For each sum, find the number of terms, the first term, and the last

term. Then evaluate the sum.

10

26. E (2n + 3)

27. E (4 – n)

28. E (n + 1)

29. У (Зп – 5)

n=1

n=2

n=1

n=3

Lesson 11-5 Find the sum of each infinite geometric series.

30. 4 + 2 + 1 ++

31. 3 – 1 +- +…

32. 2.2 – 0.22 + 0.022 -.

34. 5 – +-+..

33. 0.9 + 0.09 + 0.009 +.

35. 1 + 0.1 + 0.01 + …

O Lesson 11-5 Determine whether each series is arithmetic or geometric. Then find

the sum to the given term.

36. 3 + 6 + 9 + 12 + 15 + …; 10th term

37. 3 + 6 + 12 + 24 + 48 +…; 10th term

38. -1000 + 500 – 250 + 125 – …; 7th term

39. 87 + 72 + 57 + 42 + …; 20th term

Lesson 11-6 Write and evaluate sums to approximate the area under each

curve for the domain 0 sr S 2. First use inscribed rectangles 1 unit wide.

Then use circumscribed rectangles 1 unit wide.

40. f(x) = 2×2

41. y = x3

42. g(x) = 2x + 3

43. h(x) = |x + 3|

832

Chapter 11 Extra Practice

LTAETUNI, CR. 95453

-25-